スパースモデリングの電波天文学への展開 — 超解像多次元イメージングから磁場トモグラフィーまで —

秋山 和徳 (Kazu Akiyama)

(NRAO Jansky Fellow / MIT Haystack Observatory)

Black Hole Imaging with the Event Horizon Telescope

Kazu Akiyama, 宇宙電波懇談会 シンポジウム FY2017, 2018/3/18

AO Kazu Akiyama, 宇宙電波懇談会 シンポジウム FY2017, 2018/3/18

Image

Kazu Akiyama, 宇宙電波懇談会 シンポジウム FY2017, 2018/3/18

Fourier Domain

(Visibility)

Image

Kazu Akiyama, 宇宙電波懇談会 シンポジウム FY2017, 2018/3/18

(Images: adapted from Akiyama et al. 2015, ApJ; Movie: Laura Vertatschitsch)

(Images: adapted from Akiyama et al. 2015, ApJ; Movie: Laura Vertatschitsch)

(Images: adapted from Akiyama et al. 2015, ApJ; Movie: Laura Vertatschitsch)

Sampling is NOT perfect

Sampling is NOT perfect
 Number of data M < Number of image pixels N

IN

) Kazu Akiyama, 宇宙電波懇談会 シンポジウム FY2017, 2018/3/18

- Sampling is NOT perfect
 Number of data M < Number of image pixels N
- Equation is *ill-posed*: infinite numbers of solutions

IN

- Sampling is NOT perfect
 Number of data M < Number of image pixels N
- Equation is *ill-posed*: infinite numbers of solutions
- Interferometric Imaging: Picking a reasonable solution based on a prior assumption

LN

AO Kazu Akiyama, 宇宙電波懇談会 シンポジウム FY2017, 2018/3/18

Philosophy: Reconstructing images with the smallest number of point sources within a given residual error

Philosophy: Reconstructing images with the smallest number of point sources within a given residual error

$$\min_{\mathbf{x}} ||\mathbf{x}||_0 \text{ subject to } ||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 < \varepsilon$$

Kazu Akiyama, 宇宙電波懇談会 シンポジウム FY2017, 2018/3/18

Philosophy: Reconstructing images with the smallest number of point sources within a given residual error

$$\min_{\mathbf{x}} ||\mathbf{x}||_0 \text{ subject to } ||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 < \varepsilon$$

L_p-norm:
$$||\mathbf{x}||_{p} = \left(\sum_{i} |x_{i}|^{p}\right)^{\frac{1}{p}}$$
 (p>0)

HAYSTACK OBSERVATORY

 $|| \times ||_0 =$ number of non-zero pixels in the image

Philosophy: Reconstructing images with the smallest number of point sources within a given residual error

$$\min_{\mathbf{x}} \frac{||\mathbf{x}||_0}{|\mathsf{Number}|} \text{ subject to } ||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 < \varepsilon$$
Number
of non-zero pixels
(point sources)

L_p-norm:
$$||\mathbf{x}||_{p} = \left(\sum_{i} |x_{i}|^{p}\right)^{\frac{1}{p}}$$
 (p>0)

HAYSTACK OBSERVATORY

 $|| \times ||_0 =$ number of non-zero pixels in the image

Philosophy: Reconstructing images with the smallest number of point sources within a given residual error

$$\min_{\mathbf{x}} ||\mathbf{x}||_{0} \text{ subject to } ||\mathbf{y} - \mathbf{A}\mathbf{x}||_{2}^{2} < \varepsilon$$
Number
of non-zero pixels
(point sources)
$$\lim_{t \to \infty} |\mathbf{x}||_{2} < \varepsilon$$

$$\lim_{t \to \infty} |\mathbf{x}||_{2} < \varepsilon$$

$$\lim_{t \to \infty} |\mathbf{x}||_{2} < \varepsilon$$

Chi-square: Consistency between data and the image

L_p-norm:
$$||\mathbf{x}||_p = \left(\sum_i |x_i|^p\right)^{\frac{1}{p}} \quad \text{(p>0)}$$

HAYSTACK OBSERVATORY

 $|| \times ||_0 =$ number of non-zero pixels in the image

Philosophy: Reconstructing images with the smallest number of point sources within a given residual error

$\min ||\mathbf{x}||_0$ subject to $||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 < \varepsilon$

Computationally very expensive!! (It can be solved for N < ~100)

2 2 2 2 0 ROV 9 12 10

- L_0 norm is not continuous, nondifferentiable
- Combinational Optimization

 $|| \times ||_0 =$ number of non-zero pixels in the image

Sparse Reconstruction: CLEAN (greedy approach) CLEAN (Hobgom 1974) = Matching Pursuit (Mallet & Zhang 1993)

Computationally very cheap, but highly affected by the Point Spread Function

Dirty map: FT of zero-filled Visibility Point Spread Function: Dirty map for the point source Solution: Point sources + Residual Map

(3C 273, VLBA-MOJAVE data at 15 GHz)

Event Horizon Telescope

う Kazu Akiyama, 宇宙電波懇談会 シンポジウム FY2017, 2018/3/18

Sparse Reconstruction: CLEAN (greedy approach) CLEAN (Hobgom 1974) = Matching Pursuit (Mallet & Zhang 1993)

Computationally very cheap, but highly affected by the Point Spread Function

Dirty map: FT of zero-filled Visibility Point Spread Function: Dirty map for the point source Solution: Point sources + Residual Map

(3C 273, VLBA-MOJAVE data at 15 GHz)

Event Horizon Telescope

う Kazu Akiyama, 宇宙電波懇談会 シンポジウム FY2017, 2018/3/18

Sparse Reconstruction: CLEAN (greedy approach) CLEAN (Hobgom 1974) = Matching Pursuit (Mallet & Zhang 1993)

CLEAN is problematic for the black hole shadows?

HAYSTACK OBSERVATORY NRAO Kazu Akiyama, 宇宙電波懇談会 シンポジウム FY2017, 2018/3/18

AO Kazu Akiyama, 宇宙電波懇談会 シンポジウム FY2017, 2018/3/18

Convex Relaxation: Relaxing L0-norm to a convex, continuous, and differentiable function

Convex Relaxation: Relaxing L0-norm to a convex, continuous, and differentiable function

$$\min_{\mathbf{x}} ||\mathbf{x}||_1 \text{ subject to } ||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 < \varepsilon$$

Convex Relaxation: Relaxing L0-norm to a convex, continuous, and differentiable function

$$\min_{\mathbf{x}} ||\mathbf{x}||_1 \text{ subject to } ||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 < \varepsilon$$
$$\longmapsto \min\left(||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 + \Lambda_l ||\mathbf{x}||_1\right).$$

equivalent

X

Regularization

on sparsity

Convex Relaxation: Relaxing L0-norm to a convex, continuous, and differentiable function

$$\min_{\mathbf{x}} ||\mathbf{x}||_{1} \text{ subject to } ||\mathbf{y} - \mathbf{A}\mathbf{x}||_{2}^{2} < \varepsilon$$

$$\underset{\mathbf{x}}{ \longleftarrow} \min_{\mathbf{x}} \left(||\mathbf{y} - \mathbf{A}\mathbf{x}||_{2}^{2} + \Lambda_{l}||\mathbf{x}||_{1} \right).$$

$$\underset{\mathbf{x}}{ \text{equivalent}} \text{ Chi-square } \underset{\text{on sparsity}}{ \text{Regularization } }$$

- Reconstruction purely in the visibility domain:

Not affected by de-convolution beam (point spread function) Many applications after appearance of *Compressed Sensing* (Donoho, Candes+)

(Honma, Akiyama, Uemura & Ikeda 2014, PASJ)

Event Horizon Telescope

Kazu Akiyama, 宇宙電波懇談会 シンポジウム FY2017, 2018/3/18

Pursuing only sparsity is not optimal

A key assumption in CLEAN and LI regularization: images must be sparse.

May NOT work!

- Extended source
- Even compact source with too small image pixels

Akiyama et al. 2017b, AJ

We need somewhat sparse and smooth images NOT depending on adopted sizes of imaging pixels.

$$\min_{\mathbf{x}} \left(||\mathbf{y} - \mathbf{A}\mathbf{x}||_{2}^{2} + \Lambda_{l} ||\mathbf{x}||_{1} + \Lambda_{t} ||\mathbf{x}||_{\mathrm{tv}} \right)$$

$$\min_{\mathbf{x}} \left(||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 + \Lambda_l ||\mathbf{x}||_1 + \Lambda_t ||\mathbf{x}||_{\mathrm{tv}} \right)$$

Chisquare

 $\min\left(||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 + \Lambda_l ||\mathbf{x}||_1 + \Lambda_t ||\mathbf{x}||_{\mathrm{tv}}\right)$ \mathbf{x}

Chisquare

LI norm

$$\min_{\mathbf{x}} \frac{(||\mathbf{y} - \mathbf{A}\mathbf{x}||_{2}^{2} + \Lambda_{l}||\mathbf{x}||_{1} + \Lambda_{t}||\mathbf{x}||_{tv})}{\mathbf{Chisquare}}$$
LI norm Total Variation:

Regularizing the sparsity on the gradient domain = Favoring smooth images

Sparse Modeling on the Gradient Image $\min\left(||\mathbf{y} - \mathbf{A}\mathbf{x}||_2^2 + \Lambda_l ||\mathbf{x}||_1 + \Lambda_t ||\mathbf{x}||_{\mathrm{tv}}\right)$ LI norm _ Total Variation: Chisquare Regularizing the sparsity on the gradient domain = Favoring smooth images $||\mathbf{x}||_{tv} = \sum \sum \left(|x_{i+1,j} - x_{i,j}|^2 + |x_{i,j+1} - x_{i,j}|^2 \right).$ Model mfista (L1+TV^2) Kuramochi & KA et al. 2018 ApJ, in press Event Horizon Telescope

NRAO Kazu Akiyama, 宇宙電波懇談会 シンポジウム FY2017, 2018/3/18

HAYSTACK OBSERVATORY

Application to Real Data: Protoplanetary Disks

ALMA Observations of Protoplanetary Disk HD 142527 (345 GHz)

Kazu Akiyama, 宇宙電波懇談会 シンポジウム FY2017, 2018/3/18

Application to Real Data: Protoplanetary Disks

ALMA Observations of Protoplanetary Disk HD 142527 (345 GHz)

Compact configuration Intermediate config. Nominal **Superresolution** Nominal (same to the intermediate configuration) 約3倍の高分解能: 0.20"×0.15" **Resolution** Resolution Spars CLEAN (Cyc2) CLEAN (Cyc3) AN (Cyc2) CLEAN (Cyc3) 0 0 0 Fukagawa et al. in prep. Kataoka et al. 2016, ApJ

(Yamaguchi, KA, & Kataoka et al. in prep.)

Applications to SKA Science: Faraday Tomography

EVPA rotation of radio waves in magnetized plasma

 $\chi = \chi_0 + RM\lambda^2$ RM (rad m⁻²) $\approx 811.9 \int \left(\frac{n_{\rm e}}{{
m cm}^{-2}}\right) \left(\frac{B_{||}}{\mu {
m G}}\right) \left(\frac{dr}{{
m kpc}}\right)$

Rotation angle is proportional to λ^2 = phase rotation in linear Pol spectrum

This is very similar to what we usually see in interferometric data.

- (e.g.) A point source in the image causes a phase rotation in the visibility, which is a spatial spectrum of the image.
 - $\Delta \phi = 2\pi x_0 u$ for a point source at $x = x_0$

(x, u) for interferometric imaging; (RM, λ^2) for Faraday Rotation

Applications to SKA Science: Faraday Tomography

(Akiyama et al. in prep., Collaboration with SKA-JP Faraday Tomography WG)

EHT Imaging: Fusion of Young Powers & Divergence

Kazu Akiyama

(MIT Astronomy)

Andre Young (SAO Astronomy)

Lindy Blackburn (SAO Astronomy)

Katie Bouman (MIT Computer Vision)

Andrew Chael (Harvard Physics) Simulation • An or • Earth

Marki Honma NAOJ Astronomy

Shiro Ikeda ISM Statistical Mathematics Fumie Tazaki NAOJ Astronomy

Kazuki Kuramochi U.Tokyo Astronomy

Michael Johnson (SAO Astronomy)

Julian Rosen

(UGA Mathematics)

AO Kazu Akiyama, 宇宙電波懇談会 シンポジウム FY2017, 2018/3/18

No good phase calibrators! We need to carefully CLEAN so that images are reasonably smooth and sparse, and consistent with closure phases.

No good phase calibrators! We need to carefully CLEAN so that images are reasonably smooth and sparse, and consistent with closure phases.

Solution: Imaging from Amplitudes + Closure Phases

Sparse Modeling: Akiyama et al. 2017a, Kuramochi & KA et al. 2018 MEM: Lu et al. 2014, 2016, Fish et al. 2016, Chael et al. 2016 CHIRP: Bouman et al. 2016

No good amplitude calibrations! We need to carefully CLEAN so that images are consistent with amplitude gains of ~10-30 %...., etc....

No good amplitude calibrations! We need to carefully CLEAN so that images are consistent with amplitude gains of ~10-30 %...., etc....

Solution: Full Closure Imaging (Cl. Amplitudes + Cl. Phase)

M87 Jet Model (Moscibrodzka+17)

EHT 2017/2018 Full Closure Imaging (Sparse Modeling)

Theoretical Background: Chael , ..., KA et al. 2018, ApJ, in press.

Event Horizon Telescope

HAYSTACK OBSERVATORY NRAO Kazu Akiyama,宇宙電波懇談会 シンポジウム FY2017,2018/3/18

Sgr A* (and M87) has a time variability.

Solution: regularize and solve movies.

(extension of sparse and other regularizers in time direction)

(Johnson ,..., KA et al. 2017, ApJ, Bouman et al. 2017, submitted)

Event Horizon Telescope

HAYSTACK OBSERVATORY NRAO Kazu Akiyama, 宇宙電波懇談会 シンポジウム FY2017, 2018/3/18

Sgr A* (and M87) has a time variability.

Solution: regularize and solve movies.

(extension of sparse and other regularizers in time direction)

(Johnson ,..., KA et al. 2017, ApJ, Bouman et al. 2017, submitted)

Event Horizon Telescope

HAYSTACK OBSERVATORY NRAO Kazu Akiyama, 宇宙電波懇談会 シンポジウム FY2017, 2018/3/18

Applications of Dynamical Imaging to M87 data

Implementation for the Next Generation Interferometers

VLBI, Optical interferometers (EHT, VLBA, EVN, EAVN, Radio Astron...)

- Absolute phase information will be lost in general
- Amplitude calibration could be not reliable
- Require closure imaging and self-calibration

Python-interfaced package SMILI (Akiyama et al. 2018, to be submitted)

Present & next generation connected interferometers (ALMA, VLA, SKA, ngVLA, LOFAR, ...)

- Should be integrated into 3rd generation calibration packages handling direction-dependent effects (see, e.g., Smirnov 2011, A&A)
- Full complex visibility imaging & selfcal would be enough.

Implementation to CASA (Nakazato, Ikeda, <u>KA</u>, Kosugi, in prep.)

Summary

- Sparse Modeling (and other EHT imaging techniques) provide a new opportunity to obtain high-quality, high-resolution images (and movies) from various type of interferometric data sets.
- On-going wide application to various sources and other problems
 - Radio Stars, Protoplanetary disks, Jets
 - Faraday Tomography
- Next Scope: 3D/4D imaging, Wide-field Imaging

Sgr A* is scattered!

Diffractive scattering: invertible Refractive scattering: not invertible

Solution: regularize and solve the phase screen of the refractive scattering as well!

Unscattered

Scattered

Stochastic Optics Reconstructions

(Scattering Optics: Johnson 2016, ApJ)

Event Horizon Telescope

) Kazu Akiyama, 宇宙電波懇談会 シンポジウム FY2017, 2018/3/18

Application to Real Data: VLBA M87 Data

Clear reproduction of counter jets

Derived collimation profile of the M87 jet is consistent with 86 GHz data

(Tazaki et al. 2017, submitted)

Event Horizon Telescope

Kazu Akiyama, 宇宙電波懇談会 シンポジウム FY2017, 2018/3/18