SKA報告

高橋慶太郎(熊本大学) 2018年3月19日@宇宙電波懇談会

目次

- 1、SKA update
- 2 、 SKA-Japan update
- 3、SKA参加に向けて
- 4、天文台から(赤堀さん)

明日:技術開発(青木さん)

1、SKA update

Square Kilometre Array

次世代低周波電波望遠鏡

- 高感度、広視野、広帯域、高分解能
- SKA1: 10% (674MEuro)
- SKA2: 100% (???)

Square Kilometre Array

SKA-low

- ・オーストラリア
- 50 350MHz
- 宇宙再電離21cm線

SKA-mid

- ・南アフリカ
- 350MHz 24GHz

コスト

2013

cost cap: €674M (2016 Euro) re-baselining

2016

コスト:建設€916M・運用128M/yr

Cost Control Project発足

科学・技術・スケジュールを考慮しコスト削減案作成 2017

コスト : 建設€797.7M・運用€88.7M/yr・開発€20M/yr Deployment Design

現在の予算で作れるもの。新たな資金が得られ次第、 Baseline Designに近づける。

Deployment Design

外側のアンテナを省いて基線長を短くし計算機を減らす。

	Design Baseline	Deployment Baseline	Re-instatement '+' means add to system
SKA1-Mid			
No. dishes	133	130	+3 dishes at 150 km
Max. Baseline	150 km	120 km	+ infra to 150 km
Band 1 Feeds	133	130	+3 Band 1 Feeds for 3 dishes
Band 2 Feeds	133	130	+3 Band 2 Feeds for 3 dishes
Band 5 Feeds	133	67	+66 Band 5 feeds
Pulsar Search	500 nodes	375 nodes	+125 nodes
(PSS)			
SKA1-Low			
No. stations	512	476	+36 stations (18 stns at 49 & 65 km)
Max. Baseline	65 km	40 km	+infra to 65km
Pulsar Search	167 nodes	125 nodes	+42 nodes
Common			
Compute Power	260 PFLOPs	50 PFLOPs	+210 PFLOPs

Key Science Project

Key Science Projectとは

- ・数千時間の観測時間を要求するプロジェクト
- ・定常運用になったら全観測時間の7割程度?
- ・「宇宙再電離21cm線」「HI全天サーベイ」 「宇宙磁場」「パルサー」など
- 広くコミュニティから募集される
- ・PI数、参加者数など基本的には貢献度に比例

、 SKA-Japan update

SKA Japan組織

2008年設立、メンバー~200人 執行部(2018/04~)

- : 杉山(名古屋) • 代表
- 広報 : 半田 (鹿児島) 長谷川 (名古屋)
- ·外部資金 : 今井 (鹿児島)
- ・天文台担当:赤堀 (NAOJ)
- ・顧問 :小林 (NAOJ)
- Science Working Group
 - 代表 : 市來 (名古屋)
 - 副代表: 竹内(名古屋)
- Engineering Working Group - 代表 : 青木(山口)

• 副代表 : 高橋 (熊本) 中西 (鹿児島)

SKA Japan組織

<u>Science Working Group</u> 代表:市來(名古屋) 副代表:竹内(名古屋)

- ・遠方宇宙:平下 (ASIAA)
 - 銀河進化:竹内(名古屋)
 - 宇宙論:山内(神奈川)
 - 再電離:長谷川(名古屋)
- パルサー:高橋(熊本)
- •宇宙磁場:町田(九州)
- •位置天文:今井(鹿児島)
- •星間物質:立原(名古屋)
- 突発天体:新沼(山口)
- •星惑星形成:塚本(鹿児島)

· 宇宙生物:??(??)

<u>Engineering Working Group</u> 代表:青木(山口)

- ・フロントエンド
- ・バックエンド
- ・データ解析

<u>産業フォーラム</u> 代表:熊沢(東陽テクニカ)

<u>SKA-Japanの活動</u>

precursor参加

- ・MWA:宇宙再電離・宇宙磁場・銀河進化
- $\boldsymbol{\cdot} \text{ ASKAP}: \text{POSSUM} \boldsymbol{\cdot} \text{ GASKAP} \boldsymbol{\cdot} \text{ WALLABY}$
- ・Parkes:パルサー

出版

- 日本版サイエンスブック(2015, 2016)
- ・エンジニアリングレポート(2016)

研究会など 2017/09 日本物理学会シンポジウム 2018/01 パルサー・突発天体研究会 2018/04 MWA EoR Busy Week 2018/05 宇宙磁場国際会議 ASKAP POSSUM Meeting 2018/06 SKA技術会議

 $mose^{2,6,7}$.

ig Group

sortium (2016) X format v.1.0

y by

iya

chiro

rtium

ortium (2016)

X format v.1.0

Formation, Evolution, and Revolution of Galaxies by SKA: Activities of SKA- Janan Galaxy Evolution

Tsutomu T. Hiroyuki Hiras on behalf of t

Cosmolo SKA-Japa

Daisuke YAMA NAMIKAWA^{6,7} SHIMABUKUR **YOKOYAMA**¹², Cosmology S

Resolving 4-D Nature of Magnetism with **Depolarization and Faraday Tomography:** Japanese SKA Cosmic Magnetism Science

Takuya ΑκαμοRI^{1*}, Yutaka FUJITA², Kiyotomo ICHIKI³, Shinsuke IDEGUCHI⁴, Takahiro KUDOH⁵, Yuki KUDOH⁶, Mami MACHIDA⁷, Hiroyuki NAKANISHI¹, Hiroshi OHNO⁸, Takeaki Ozawa¹, Keitaro Takahashi⁹, Motokazu TAKIZAWA¹⁰, on behalf of the SKA-JP Magnetism SWG.

SKA-Japan Pulsar Science with the Square Kilometre Arrav

Radio Astrometry towards the Nearby Universe with the SKA

Hiroshi Imai¹, Ross A. Burns¹, Yoshiyuki Yamada², Naoteru Goda³, Tahei Yano³, Gabor Orosz¹, Kotaro Niinuma⁴ and Kenji Bekki⁵ (SKA Japan Astrometry Science Working Group)

ここ3年・SKAに直結する主なもの ●利学研究弗

●科学研究費

- •50,000千円/3yr
- ・MWA参加費
- •研究員雇用(名古屋)

●二国間交流事業

- •10,000千円/3yr
- オーストラリアに研究者派遣

●国立天文台大学支援経費(2014.10・2017.9)

- •60,000千円/3yr
- 鹿児島: SKA本部派遣
- ・熊本:プレカーサー参加、研究者派遣
- ・名古屋:サイエンス、光赤外との協働

MWA21cm線-CMB相関

吉浦

MNRAS 000, 1-12 (0000)

Preprint 2 March 2018

Compiled using MNRAS IAT_EX

S. Yoshiura^{1*}, K. Ichiki^{2,3} B. Pindor^{4,6}, K. Takahashi¹ H. Tashiro² C. M. Trott^{5,6,7} ¹Department of Physics, Kumamoto University, Kumamoto, Japan

²Department of Physics and Astrophysics, Nagoya University Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan

³Kobayashi-Maskawa Institute for the Origin of Particles and the Universe, Nagoya University Nagoya, 464-8602, Japan

⁴ARC Centre of Excellence for All-sky Astrophysics (CAASTRO)

⁵International Centre for Radio Astronomy Research, Curtin University, Perth, WA 6845, Australia

⁶School of Physics, The University of Melbourne, Parkville, VIC 3010, Australia

⁷ARC Centre of Excellence for All Sky Astrophysics in 3 Dimensions (ASTRO 3D)

2 March 2018

ABSTRACT

Observation of the 21 cm line signal from neutral hydrogen during the Epoch of Reionization is challenging due to extremely bright Galactic and extragalactic foregrounds and complicated instrumental calibration. A reasonable approach for mitigating these problems is the cross correlation with other observables. In this work, we present the first results of the cross power spectrum (CPS) between radio images observed by the Murchison Widefield Array and the cosmic microwave background (CMB), measured by the Planck experiment. The resulting CPS is consistent with zero because the error is dominated by the foregrounds in the 21 cm observation, and we obtain an upper limit $l^2C_l/2\pi < -3.1 \times 10^7 \mu K^2$, at l = 100 and at 171MHz. Additionally, the variance of the signal indicates the presence of non-Gaussian error at small scales. Furthermore, we reduce the error by one order of magnitude with application of a foreground removal using a polynomial fitting method. Based on the results, we find that the detection of the 21 cm-CMB CPS with the MWA Phase I requires more than 99.95% of the foreground signal removed, 2000 hours of deep observation and 50% of the sky fraction coverage.

0.6

171MHz, 8MHz, 3 hours, ly/beam

0

RA (degrees)

5

-5

MWA21cm線-LAE相関

久保田

100 120 140

x Mpc

MNRAS 000, 1-14 (2017) Preprint 18 January 2018 Compiled usin Detectability of 21cm-signal during the Epoch Reionization with 21cm-Lyman- α emitter cross-correlation. I. Kenji Kubota^{1*}, Shintaro Yoshiura¹, Keitaro Takahashi¹, Ken Hidenobu Yajima³, Masami Ouchi^{4,5}, B. Pindor^{6,7}, and R. L. W ¹Faculty of Science, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555, Japan ²Department of Physics and Astrophysics, Nagoya University Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Ja ³ Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan z=6.6(dz=0.1)0.3 160 140 0.25 120 0.2 100 長谷川 alaxies able to y[Mpc] 80 0.15 [K]^{io sour} EoR at reusinus ISC). Additionally, 60 nation of the LAEs letectability of the 0.1 proved reionization at $z \sim 6$ indicated 40 pth. We also focus 0.05 0.0003 20 40 60 80 100120140160 0.0002 x[Mpc] 0.0001 y[Mpc] Key words: reioniz 0.0000 60 DUCTION ark Ages, the neutral hydrogen in the l -0.0001 1 by massive stars and galaxies which emit 40 hotons. This phase of the universe is called -0.0002 20 19001@st.kumamoto-u.ac.jp

0

0 20 40 60 80

-0.0003 Author 3、SKA参加に向けて

<u>SKAへの参加に向けて</u>

●方向性

- ・SKA1から参加したい
- ・2020年代SKA1:マイナー(数十億円規模)
- ・2030年代SKA2:メジャー(数百億円規模)
- ・2020年マスタープランへの応募
- ・サイエンス、技術開発の両方の寄与
- ・VLBIコミュニティとの協働

●サイエンス

- ・引き続き準備研究を進める
- 国際SWAへの寄与
- precursorを用いた観測研究
- ●技術開発
 - ・SKA1のための短期的な開発(日本の既存技術で)
 - ・SKA2のための長期的でよりチャレンジングな開発
 → 超広帯域受信機(Band 1-3)、省電力相関器

SKA1における技術的貢献

●経緯

- ・SKA本部、EWGと調整し、3つのオプション
- ・後発でも貢献可能な項目
- ・フルメンバー以外の扱いが未定なので交渉が必要

Band 5c (14-26GHz) ・開発担当:天文台、NICT(氏原)、鹿児島、川口氏 ・サイエンス:パルサー、アストロメトリ、宇宙磁場 ●VLBIバックエンド

- ・日本の強みと興味
- ・開発担当:天文台(小山・河野)、鹿児島、山口など
- ・サイエンス:アストロメトリ
- •AIV (assembly, integration, verification)
 - 日本の経験が評価され期待されている
 - •開発担当:天文台、熊本

施設		周波数(中心)	(MHz)
SKA1-LOW		50-350 (200)	
SKA1-MID	1	350-1050 (700)	
	2	950-1760 (1355	5)
	3	1650-3050 (235	50)
	4	2800-5180 (3990)	
	5a	4000-9250 (6625)	
	5b	9000-16700 (12	2850)
PAF	1	350-900	
	2	650-1670	
	3	1500-4000	20 K FLEXII AND CARB
WBSPF	Α	1600-5200	VACUUM-SIDE
	В	4600-24000	FEED PACKAGE
			BAND 3 VACUUM
			ENCLOSURE
			ACCESS FLANGE
			_
			BAND 3 FEI HORN

天文台との折衝

- ●水沢観測所への要望書(2015/04:本間所長宛)
 サイエンス・技術開発・推進体制への協力依頼
 → 水沢観測所SKAサイエンス検討会
- ●幹部面談(2017/08:林、小林、半田、杉山、高橋) 大学から
 - ・SKA-Japan、大学支援経費活動報告
 - ・SKA1参加のための推進体制と技術貢献案の提案 天文台よりの回答
 - ・SKAを水沢の将来計画と位置づけ推進するのが良い
 - ・2018年度からのサブプロジェクト化を目指すと良い
 - ・SKAJP + VLBIというより大きなコミュニティ

電波専門委員会・VLBI小委員会、VERAUM、V懇 などを経てサブプロジェクト申請へ